Iranian Journal of Mathematical Sciences and Informatics Vol. 18, No. 2 (2023), pp 139-151 DOI: 10.52547/ijmsi.18.2.139

2-Irreducible and Strongly 2-Irreducible Submodules of a Module

F. Farshadifar^{a*}, H. Ansari-Toroghy^b

^aDepartment of Mathematics Education, Farhangian University, P.O. Box 14665-889, Tehran, Iran ^bDepartment of Pure Mathematics, Faculty of Mathematical Sciences University of Guilan, Rasht, Iran

> E-mail: f.farshadifar@cfu.ac.ir E-mail: ansari@guilan.ac.ir

ABSTRACT. Let R be a commutative ring with identity and M be an R-module. In this paper, we will introduce the concept of 2-irreducible (resp., strongly 2-irreducible) submodules of M as a generalization of irreducible (resp., strongly irreducible) submodules of M and investigated some properties of these classes of modules.

Keywords: Irreducible ideal, Strongly 2-irreducible ideal, 2-irreducible submodule, Strongly 2-irreducible submodule.

2000 Mathematics subject classification: 13C13, 13C99.

1. INTRODUCTION

Throughout this paper, R will denote a commutative ring with identity and \mathbb{Z} will denote the ring of integers.

An ideal I of R is said to be *irreducible* if $I = J_1 \cap J_2$ for ideals J_1 and J_2 of Rimplies that either $I = J_1$ or $I = J_2$. A proper ideal I of R is said to be *strongly irreducible* if for ideals J_1, J_2 of $R, J_1 \cap J_2 \subseteq I$ implies that $J_1 \subseteq I$ or $J_2 \subseteq I$ [12]. An ideal I of R is said to be 2-irreducible if whenever $I = J_1 \cap J_2 \cap J_3$ for

^{*}Corresponding Author

Received 14 June 2019; Accepted 15 January 2022 ©2023 Academic Center for Education, Culture and Research TMU

ideals J_1, J_1 and J_3 of R, then either $I = J_1 \cap J_2$ or $I = J_1 \cap J_3$ or $I = J_2 \cap J_3$. Clearly, any irreducible ideal is a 2-irreducible ideal [21].

A proper submodule N of an R-module M is said to be *irreducible* (resp., strongly *irreducible*) if for submodules H_1 and H_2 of M, $N = H_1 \cap H_2$ (resp., $H_1 \cap H_2 \subseteq N$) implies that $N = H_1$ or $N = H_2$.(resp., $H_1 \subseteq N$ or $H_2 \subseteq N$).

The main purpose of this paper is to introduce the concept of 2-irreducible and strongly 2-irreducible submodules of an R-module M as a generalization of irreducible and strongly irreducible submodules of M and obtain some related results.

A submodule N of an R-module M is said to be a 2-irreducible submodule if whenever $N = H_1 \cap H_2 \cap H_3$ for submodules H_1 , H_2 and H_3 of M, then either $N = H_1 \cap H_2$ or $N = H_2 \cap H_3$ or $N = H_1 \cap H_3$ (Definition 2.1).

A proper submodule N of an R-module M is said to be a strongly 2irreducible submodule if whenever $H_1 \cap H_2 \cap H_3 \subseteq N$ for submodules H_1 , H_2 and H_3 of M, then either $H_1 \cap H_2 \subseteq N$ or $H_2 \cap H_3 \subseteq N$ or $H_1 \cap H_3 \subseteq N$ (Definition 2.6).

In Section 2 of this paper, for an R-module M, among other results, we prove that if M is a Noetherian R-module and N is a 2-irreducible submodule of M, then either N is irreducible or N is an intersection of exactly two irreducible submodules of M (Theorem 2.22). In Theorem 2.9, we provide a characterization for strongly 2-irreducible submodules of M. Also, it is shown that if M is a strong comultiplication R-module, then every non-zero proper submodule of R is a strongly sum 2-irreducible R-module if and only if every non-zero proper submodule of M is a strongly 2-irreducible submodule of M(Theorem 2.11). Further, it is proved that if N is a submodule of a finitely generated multiplication R-module M, then N is a strongly 2-irreducible submodule of M if and only if $(N :_R M)$ is a strongly 2-irreducible ideal of R (Theorem 2.12). In Theorem 2.19 and 2.21, we provide some useful characterizations for strongly 2-irreducible submodules of some special classes of modules. Example 2.14 shows that the concepts of strongly irreducible submodules and strongly 2-irreducible submodules are different in general. Finally, let $R = R_1 \times R_2 \times \cdots \times R_n$ $(2 \le n < \infty)$ be a decomposable ring and $M = M_1 \times M_2 \cdots \times M_n$ be an *R*-module, where for every $1 \leq i \leq n, M_i$ is an R_i -module, respectively, it is proved that a proper submodule N of M is a strongly 2-irreducible submodule of M if and only if either $N = \times_{i=1}^{n} N_i$ such that for some $k \in \{1, 2, ..., n\}$, N_k is a strongly 2-irreducible submodule of M_k , and $N_i = M_i$ for every $i \in \{1, 2, ..., n\} \setminus \{k\}$ or $N = \times_{i=1}^n N_i$ such that for some $k, m \in \{1, 2, ..., n\}$, N_k is a strongly irreducible submodule of M_k , N_m is a strongly irreducible submodule of M_m , and $N_i = M_i$ for every $i \in \{1, 2, ..., n\} \setminus \{k, m\}$ (Theorem 2.28).

2. Main results

Definition 2.1. We say that a submodule N of an R-module M is a 2irreducible submodule if whenever $N = H_1 \cap H_2 \cap H_3$ for submodules H_1 , H_2 and H_3 of M, then either $N = H_1 \cap H_2$ or $N = H_2 \cap H_3$ or $N = H_1 \cap H_3$.

EXAMPLE 2.2. Let R = K[X, Y] be a polynomial ring in variables X and Y over a field K. Let I be the ideal $\langle X^2, XY \rangle$. Then $\langle X^2, XY \rangle = \langle X \rangle \cap \langle X^2, Y \rangle$ implies that I is not an irreducible ideal of R. But since $\langle X \rangle \cap \langle X^2, Y \rangle$ is a primary decomplosition for I, one can see that I is a 2-irreducible ideal of R by using [17, 9.31].

EXAMPLE 2.3. Let R = K[X, Y] be a polynomial ring in variables X and Y over a field K and let $I = \langle X \rangle \cap \langle Y \rangle$. Then I is not an irreducible ideal of R. But since $\langle X \rangle$ and $\langle Y \rangle$ are prime and so strongly irreducible ideals of R, we have I is a 2-irreducible ideal of R by [21, Proposition 3].

Theorem 2.4. Let M be a Noetherian R-module. If N is a 2-irreducible submodule of M, then either N is irreducible or N is an intersection of exactly two irreducible submodules of M.

Proof. Let N be a 2-irreducible submodule of M. By [17, Exercise 9.31], N can be written as a finite irredundant irreducible decomposition $N = N_1 \cap N_2 \cap \ldots \cap N_k$. We show that either k = 1 or k = 2. If k > 3, then since N is 2-irreducible, $N = N_i \cap N_j$ for some $1 \le i, j \le k$, say i = 1 and j = 2. Therefore $N_1 \cap N_2 \subseteq N_3$, which is a contradiction.

Corollary 2.5. Let M be a Noetherian multiplication R-module. If N is a 2-irreducible submodule of M, then N a 2-absorbing primary submodule of M.

Proof. Let N be a 2-irreducible submodule of M. By the fact that every irreducible submodule of a Noetherian R-module is primary and regarding Theorem 2.22, we have either N is a primary submodule or is a sum of two primary submodules. It is clear that every primary submodule is 2-absorbing primary, also the sum of two primary submodules is a 2-absorbing primary submodule, by [15, Theorem 2.20].

Definition 2.6. We say that a proper submodule N of an R-module M is a strongly 2-irreducible submodule if whenever $H_1 \cap H_2 \cap H_3 \subseteq N$ for submodules H_1, H_2 and H_3 of M, then either $H_1 \cap H_2 \subseteq N$ or $H_2 \cap H_3 \subseteq N$ or $H_1 \cap H_3 \subseteq N$.

EXAMPLE 2.7. [21, Corollary 2] Consider the \mathbb{Z} -module \mathbb{Z} . Then $n\mathbb{Z}$ is a strongly 2-irreducible submodule of \mathbb{Z} if n = 0, p^t or $p^r q^s$, where p, q are prime integers and t, r, s are natural numbers.

Proposition 2.8. The strongly 2-irreducible submodules of a distributive *R*-module are precisely the 2-irreducible submodules.

Proof. This is straightforward.

Theorem 2.9. Let N be a proper submodule of an R-module M. Then the following conditions are equivalent:

- (a) N is a strongly 2-irreducible submodule;
- (b) For all elements x, y, z of M, we have $(Rx + Ry) \cap (Rx + Rz) \cap (Ry + Rz) \subseteq N$ implies that either $(Rx + Ry) \cap (Rx + Rz) \subseteq N$ or $(Rx + Ry) \cap (Ry + Rz) \subseteq N$ or $(Rx + Rz) \cap (Ry + Rz) \subseteq N$.

Proof. $(a) \Rightarrow (b)$ This is clear.

 $(b) \Rightarrow (a)$ Let $H_1 \cap H_2 \cap H_3 \subseteq N$ for submodules H_1 , H_2 and H_3 of M. If $H_1 \cap H_2 \not\subseteq N$, $H_1 \cap H_3 \not\subseteq N$, and $H_2 \cap H_3 \not\subseteq N$, then there exist elements x, y, z of M such that $x \in H_2 \cap H_3$, $y \in H_1 \cap H_3$, and $z \in H_1 \cap H_2$ but $x \notin N$, $y \notin N$, and $z \notin N$. Therefore,

$$(Ry + Rz) \cap (Rx + Rz) \cap (Rx + Ry) \subseteq H_1 \cap H_2 \cap H_3 \subseteq N.$$

Hence by the part (a), either $(Ry + Rz) \cap (Rx + Rz) \subseteq N$ or $(Ry + Rz) \cap (Rx + Ry) \subseteq N$ or $(Rx + Rz) \cap (Rx + Ry) \subseteq N$. Thus either $z \in N$ or $y \in N$ or $x \in N$. This contradiction completes the proof.

Recall that a *waist submodule* of an R-module M is a submodule that is comparable to any other submodules of M.

Proposition 2.10. Let N be a proper submodule of an R-module M. Then we have the following.

- (a) If N is a strongly 2-irreducible submodule of M, then it is also a 2irreducible submodule of M.
- (b) If N is a strongly 2-irreducible submodule of M, then N is a strongly 2-irreducible submodule of T and N/K is a strongly 2-irreducible submodule of M/K for any K ⊆ N ⊆ T.
- (c) If for all elements x, y, z of M we have $Rx \cap Ry \cap Rz \subseteq N$ implies that either $Rx \cap Ry \subseteq N$ or $Rx \cap Rz \subseteq N$ or $Ry \cap Rz \subseteq N$, then N is a strongly 2-irreducible submodule of M.
- (d) If N is a waist submodule of M, then N is strongly 2-irreducible submodule of M if and only if N is 2-irreducible module.
- (e) If N satisfies $(N+T) \cap (N+K) = N + (T \cap K)$, whenever $T \cap K \subseteq N$, then N is strongly 2-irreducible submodule of M if and only if N is a 2-irreducible module.

Proof. (a) Let N be a strongly 2-irreducible submodule of M and let $N = H_1 \cap H_2 \cap H_3$ for submodules H_1 , H_2 and H_3 of M. Then by assumption, either $H_1 \cap H_2 \subseteq N$ or $H_1 \cap H_3 \subseteq N$ or $H_2 \cap H_3 \subseteq N$. Now the result follows from the fact that the reverse of inclusions are clear.

The parts (b), (d), and (e) are straightforward.

(c) Let $H_1 \cap H_2 \cap H_3 \subseteq N$ for submodules H_1 , H_2 and H_3 of M. If $H_1 \cap H_2 \not\subseteq N$, $H_1 \cap H_3 \not\subseteq N$, and $H_2 \cap H_3 \not\subseteq N$, then there exist elements x, y, z of M such that $x \in H_2 \cap H_3$, $y \in H_1 \cap H_3$, and $z \in H_1 \cap H_2$ but $x \notin N$, $y \notin N$, and $z \notin N$. Now the result follows by assumption.

An *R*-module *M* is said to be a *comultiplication module* if for every submodule *N* of *M* there exists an ideal *I* of *R* such that $N = (0 :_M I)$, equivalently, for each submodule *N* of *M*, we have $N = (0 :_M Ann_R(N))$ [2].

An *R*-module *M* satisfies the double annihilator conditions (DAC for short) if for each ideal *I* of *R* we have $I = Ann_R(0:_M I)$ [9].

An *R*-module M is said to be a *strong comultiplication module* if M is a comultiplication *R*-module and satisfies the DAC conditions [4].

A submodule N of an R-module M is said to be a strongly sum 2-irreducible submodule if whenever $N \subseteq H_1 + H_2 + H_3$ for submodules H_1 , H_2 and H_3 of M, then either $N \subseteq H_1 + H_2$ or $N \subseteq H_2 + H_3$ or $N \subseteq H_1 + H_3$. Also, M is said to be a strongly sum 2-irreducible module if and only if M is a strongly sum 2-irreducible submodule of itself [10].

Theorem 2.11. Let M be a strong comultiplication R-module. Then every non-zero proper submodule of R is a strongly sum 2-irreducible R-module if and only if every non-zero proper submodule of M is a strongly 2-irreducible submodule of M.

Proof. " \Rightarrow " Let N be a non-zero proper submodule of M and let $H_1 \cap H_2 \cap H_3 \subseteq N$ for submodules H_1, H_2 and H_3 of M. Then by using [11, 2.5],

$$Ann_R(N) \subseteq Ann_R(H_1) + Ann_R(H_2) + Ann_R(H_3).$$

This implies that either $Ann_R(N) \subseteq Ann_R(H_1) + Ann_R(H_2)$ or $Ann_R(N) \subseteq Ann_R(H_1) + Ann_R(H_3)$ or $Ann_R(N) \subseteq Ann_R(H_2) + Ann_R(H_3)$ since by assumption, $Ann_R(N)$ is a strongly sum 2-irreducible *R*-module. Therefore, either $H_1 \cap H_2 \subseteq N$ or $H_1 \cap H_3 \subseteq N$ or $H_2 \cap H_3 \subseteq N$ since *M* is a comultiplication *R*-module.

" \Leftarrow " Let I be a non-zero proper submodule of R and let $I \subseteq I_1 + I_2 + I_3$. Then

$$(0:_M I_1) \cap (0:_M I_2) \cap (0:_M I_3) \subseteq (0:_M I).$$

Thus by assumption, either $(0:_M I_1) \cap (0:_M I_2) \subseteq (0:_M I)$ or $(0:_M I_1) \cap (0:_M I_3) \subseteq (0:_M I)$ or $(0:_M I_2) \cap (0:_M I_3) \subseteq (0:_M I)$. This implies that either $(0:_M I_1 + I_2) \subseteq (0:_M I)$ or $(0:_M I_1 + I_3) \subseteq (0:_M I)$ or $(0:_M I_2 + I_3) \subseteq (0:_M I)$. Thus either $I \subseteq I_1 + I_2$ or $I \subseteq I_1 + I_3$ or $I \subseteq I_2 + I_3$ since M is a strong comultiplication R-module.

An *R*-module *M* is said to be a *multiplication module* if for every submodule N of *M* there exists an ideal *I* of *R* such that N = IM [6].

Theorem 2.12. Let N be a submodule of a finitely generated multiplication R-module M. Then N is a strongly 2-irreducible submodule of M if and only if $(N :_R M)$ is a strongly 2-irreducible ideal of R.

Proof. " \Rightarrow " Let N be a strongly 2-irreducible submodule of M and let $J_1 \cap J_2 \cap J_3 \subseteq (N :_R M)$ for some ideals J_1, J_2 , and J_3 of R. Then

$$J_1M \cap J_2M \cap J_3M \subseteq (N:_R M)M = N$$

by [8, Corollary 1.7]. Thus by assumption, either $J_1M \cap J_2M \subseteq N$ or $J_1M \cap J_3M \subseteq N$ or $J_2M \cap J_3M \subseteq N$. Hence, either $(J_1 \cap J_2)M \subseteq (N :_R M)M$ or $(J_1 \cap J_3)M \subseteq (N :_R M)M$ or $(J_2 \cap J_3)M \subseteq (N :_R M)M$. Therefore, either $J_1 \cap J_2 \subseteq (N :_R M)$ or $J_1 \cap J_3 \subseteq (N :_R M)$ or $J_2 \cap J_3 \subseteq (N :_R M)$ by [18, Corollary of Theorem 9].

" \Leftarrow " Let $(N :_R M)$ is a strongly 2-irreducible ideal of R and let $H_1 \cap H_2 \cap H_3 \subseteq N$ for some submodules H_1, H_2 and H_3 of M. Then we have

$$(H_1 \cap H_2 \cap H_3 :_R M)M = ((H_1 :_R M) \cap (H_2 :_R M) \cap (H_3 :_R M))M \subseteq (N :_R M)M$$

Thus $(H_1 :_R M) \cap (H_2 :_R M) \cap (H_3 :_R M) \subseteq (N :_R M)$ by [18, Corollary of Theorem 9]. Hence, either $(H_1 :_R M) \cap (H_2 :_R M) \subseteq (N :_R M)$ or $(H_1 :_R M) \cap (H_3 :_R M)) \subseteq (N :_R M)$ or $(H_2 :_R M) \cap (H_3 :_R M) \subseteq (N :_R M)$ since $(N :_R M)$ is a strongly 2-irreducible ideal of R. Therefore, either $H_1 \cap H_2 \subseteq N$ or $H_1 \cap H_3 \subseteq N$ or $H_2 \cap H_3 \subseteq N$ by [8, Corollary 1.7].

EXAMPLE 2.13. Consider the \mathbb{Z} -module $\mathbb{Z}_{p^tq^nr^m}$, where p, q, r are prime integers and t, n, m are natural numbers.

- (a) By using Theorem 2.12 and Example 2.7, one can see that $p^t \mathbb{Z}_{p^t q^n r^m}$ and $q^n \bar{r}^m \mathbb{Z}_{p^t q^n r^m}$ are strongly 2-irreducible submodules of $\mathbb{Z}_{p^t q^n r^m}$.
- (b) $p\bar{q}r\mathbb{Z}_{p^3qr} = \bar{p}qZ_{p^3qr} \cap \bar{p}r\mathbb{Z}_{p^3qr} \cap \bar{q}r\mathbb{Z}_{p^3qr}$ implies that $p\bar{q}r\mathbb{Z}_{p^3qr}$ is not a 2-irreducible submodule of \mathbb{Z}_{p^3qr} .

The following example shows that the concepts of strongly irreducible submodules and strongly 2-irreducible submodules are different in general.

EXAMPLE 2.14. Consider the Z-module \mathbb{Z}_6 . Then $0 = \overline{3}\mathbb{Z}_6 \cap \overline{2}\mathbb{Z}_6$ implies that the 0 submodule of \mathbb{Z}_6 is not strongly irreducible. But $(0 :_{\mathbb{Z}} \mathbb{Z}_6) = 6\mathbb{Z}$ is a strongly 2-irreducible ideal of Z by Example 2.7. Since the Z-module \mathbb{Z}_6 is a finitely generated multiplication Z-module, 0 is a strongly 2-irreducible submodule of \mathbb{Z}_6 by Theorem 2.12.

Lemma 2.15. Let M be an R-module. If N_1 and N_2 are strongly irreducible submodules of M, then $N_1 \cap N_2$ is a strongly 2-irreducible submodule of M.

Proof. This is straightforward.

A proper submodule P of an R-module M is said to be *prime* if for any $r \in R$ and $m \in M$ with $rm \in P$, we have $m \in P$ or $r \in (P :_R M)$ [7].

Proposition 2.16. Let M be a multiplication R-module and let N_1 , N_2 , and N_3 be prime submodules of M such that $N_1 + N_2 = N_1 + N_3 = N_2 + N_3 = M$. Then $N_1 \cap N_2 \cap N_3$ is not a strongly 2-irreducible submodule of M.

Proof. Assume on the contrary that $N_1 \cap N_2 \cap N_3$ is a strongly 2-irreducible submodule of M. Then $N_1 \cap N_2 \cap N_3 \subseteq N_1 \cap N_2 \cap N_3$ implies that either $N_1 \cap N_2 \subseteq N_1 \cap N_2 \cap N_3$ or $N_1 \cap N_2 \subseteq N_1 \cap N_2 \cap N_3$ or $N_2 \cap N_3 \subseteq N_1 \cap N_2 \cap N_3$. We can assume without loss of generality that $N_1 \cap N_2 \subseteq N_1 \cap N_2 \cap N_3$. Then $N_1 \cap N_2 \subseteq N_3$. It follows that $(N_1 :_R M)N_2 \subseteq N_3$. As N_3 is a prime submodule of M, we have $N_2 \subseteq N_3$ or $(N_2 :_R M) \subseteq (N_3 :_R M)$. Thus $N_2 \subseteq N_3$ or $N_1 \subseteq N_3$ since M is a multiplication R-module. Therefore, $N_3 = M$, which is a contradiction. □

Corollary 2.17. Let M be a multiplication R-module such that every proper submodule of M is strongly 2-irreducible. Then M has at most two maximal submodules.

Proof. This follows from Proposition 2.16

Let N be a submodule of an R-module M. The intersection of all prime submodules of M containing N is said to be the (prime) radical of N and denote by $rad_M N$ (or simply by rad(N)). In case N does not contained in any prime submodule, the radical of N is defined to be M. Also, $N \neq M$ is said to be a radical submodule of M if rad(N) = N [14]

Lemma 2.18. Let I be an ideal of R and N be a submodule of an R-module M. Then $rad(IN) = rad(N) \cap rad(IM)$.

Proof. By [13, Corollary of Theorem 6], we have $rad(N \cap IM)$) = $rad(N) \cap rad(IM)$. Since $IN \subseteq IM \cap N$, $rad(IN) \subseteq rad(IM \cap N)$. Thus $rad(IN) \subseteq rad(N) \cap rad(IM)$. Now let P be a prime submodule of M such that $IN \subseteq P$. As P is prime, $N \subseteq P$ or $I \subseteq (P :_R M)$. Hence $N \cap IM \subseteq P$. This in tourn implies that $rad(N) \cap rad(IM) \subseteq rad(IN)$, as desired.

A proper ideal I of R is said to be a 2-absorbing ideal of R if whenever $a, b, c \in R$ and $abc \in I$, then $ab \in I$ or $ac \in I$ or $bc \in I$ [5].

A proper submodule N of an R-module M is said to be a 2-absorbing primary submodule of M if whenever $a, b \in R, m \in M$, and $abm \in N$, then $am \in rad(N)$ or $bm \in rad(N)$ or $ab \in (N :_R M)$ [15].

A proper submodule N of an R-module M is called a 2-absorbing submodule of M if whenever $abm \in N$ for some $a, b \in R$ and $m \in M$, then $am \in N$ or $bm \in N$ or $ab \in (N :_R M)$ [19] and [16].

Theorem 2.19. Let M be a finitely generated multiplication R-module and N be a radical submodule of M. Then the following conditions are equivalent:

(a) N is a strongly 2-irreducible submodule of M;

- (b) N is a 2-absorbing submodule of M;
- (c) N is a 2-absorbing primary submodule of M;
- (d) N is either a prime submodule of M or is an intersection of exactly two prime submodules of M.

Proof. $(a) \Rightarrow (b)$ Let I, J be ideals of R and K be a submodule of M such that $IJK \subseteq N$. Then by using Lemma 2.18,

$$K \cap IM \cap JM \subseteq rad(K) \cap rad(IM) \cap rad(JM) = rad(IJK) \subseteq rad(N) = N$$

Hence by part (a), either $K \cap IM \subseteq N$ or $K \cap JM \subseteq N$ or $IM \cap JM \subseteq N$. Thus either $IK \subseteq N$ or $JK \subseteq N$ or $IJM \subseteq N$ as needed.

- $(b) \Rightarrow (c)$ This is clear.
- $(c) \Rightarrow (b)$ This is clear by using [15, Theorem 2.6].

 $(b) \Rightarrow (d)$ Since N is a 2-absorbing submodule of M, $(N :_R M)$ is a 2absorbing ideal of R by [20, Proposition 1]. Hence $\sqrt{(N :_R M)} = P$ is a prime ideal of R or $\sqrt{(N :_R M)} = P \cap Q$, where P and Q are distinct prime ideals of R that are minimal over $(N :_R M)$ by [5, Theorem 2.4]. We have $\sqrt{(N :_R M)}M = rad(N)$ by [14, Theorem 4]. If $\sqrt{(N :_R M)} = P$, then PM =rad(N). Since M is a multiplication R-module, PM is a prime submodule of M by [8, Corollary 2.11]. Now let $\sqrt{Ann_R(N)} = P \cap Q$, where P and Q are distinct prime ideals of R. Then $(P \cap Q)M = rad(N)$. By [8, Corollary 1.7], $(P \cap Q)M = PM \cap QM$. Thus by [8, Corollary 2.11], rad(N) is an intersection of two prime submodules of M. Now, we prove the claim by assumption that N is a radical submodule of M.

The following example shows that parts (a) and (b) of Theorem 2.19 are not equivalent in general.

EXAMPLE 2.20. Consider the submodule $G_t = \langle 1/p^t + \mathbb{Z} \rangle$ of the Z-module $\mathbb{Z}_{p^{\infty}}$. Then G_t is a strongly 2-irreducible submodule of $\mathbb{Z}_{p^{\infty}}$. But G_t is not a 2-absorbing submodule of $\mathbb{Z}_{p^{\infty}}$. It should be note that the Z-module $\mathbb{Z}_{p^{\infty}}$ is not a finitely genrated multiplication Z-module.

A submodule N of an R-module M is said to be *pure* if $IN = IM \cap N$ for every ideal I of R [1]. Also, an R-module M is said to be *fully pure* if every submodule of M is pure [3].

Theorem 2.21. Let M be a fully pure multiplication R-module and N be a submodule of M. Then the following conditions are equivalent:

- (a) N is a strongly 2-irreducible submodule of M;
- (b) N is a 2-absorbing submodule of M;
- (c) N is a 2-irreducible submodule of M.

 $⁽d) \Rightarrow (a)$ This follows from Lemma 2.15.

Proof. $(a) \Rightarrow (b)$ Let I, J be ideals of R and K be a submodule of M such that $IJK \subseteq N$. Then since M is fully pure,

$$K \cap IM \cap JM = IJK \subseteq N.$$

Hence by part (a), either $K \cap IM \subseteq N$ or $K \cap JM \subseteq N$ or $IM \cap JM \subseteq N$. Thus either $IK \subseteq N$ or $JK \subseteq N$ or $IJM \subseteq N$.

 $(b) \Rightarrow (a)$ Let $H_1 \cap H_2 \cap H_3 \subseteq N$ for submodules H_1, H_2 and H_3 of M. Then

$$(H_1:_R M) \cap (H_2:_R M) \cap (H_3:_R M) = (H_1 \cap H_2 \cap H_3:_R M) \subseteq (N:_R M)$$

Thus either $(H_1 :_R M)(H_2 :_R M) \subseteq (N :_R M)$ or $(H_1 :_R M)(H_3 :_R M) \subseteq (N :_R M)$ or $(H_2 :_R M)(H_3 :_R M) \subseteq (N :_R M)$ since $(N :_R M)$ is a 2-absorbing ideal of R by [20, Proposition 1]. We can assume without loss of generality that $(H_1 :_R M)(H_2 :_R M) \subseteq (N :_R M)$. Thus as M is fully pure, we have

$$(H_1:_R M)M \cap (H_2:_R M)M \subseteq (N:_R M)M \subseteq N.$$

Therefore, $H_1 \cap H_2 \subseteq N$ since M is a multiplication R-module.

 $(a) \Leftrightarrow (c)$ By [3, proof of Theorem 2.19], M is a distributive R-module. Now the result follows from Proposition 2.8.

Lemma 2.22. Let M be an R-module, S a multiplicatively closed subset of R, and N be a finitely generated submodule of M. If $S^{-1}N \subseteq S^{-1}K$ for a submodule K of M, then there exists $s \in S$ such that $sN \subseteq K$.

Proof. This is straightforward.

Proposition 2.23. Let M be an R-module, S be a multiplicatively closed subset of R and N be a finitely generated prime strongly 2-irreducible submodule of Msuch that $(N :_R M) \cap S = \emptyset$. Then $S^{-1}N$ is a strongly 2-irreducible submodule of $S^{-1}M$ if $S^{-1}N \neq S^{-1}M$.

Proof. Let $S^{-1}H_1 \cap S^{-1}H_2 \cap S^{-1}H_3 \subseteq S^{-1}N$ for submodules $S^{-1}H_1$, $S^{-1}H_2$ and $S^{-1}H_3$ of $S^{-1}M$. Then $S^{-1}(H_1 \cap H_2 \cap H_3) \subseteq S^{-1}N$. By Lemma 2.22, there exists $s \in S$ such that $s(H_1 \cap H_2 \cap H_3) \subseteq N$. This implies that $H_1 \cap H_2 \cap H_3 \subseteq N$ since N is prime and $(N :_R M) \cap S = \emptyset$. Now as N is a strongly 2-irreducible submodule of M, we have either $H_1 \cap H_2 \subseteq N$ or $H_1 \cap H_3 \subseteq N$ or $H_2 \cap H_3 \subseteq N$. Therefore, either $S^{-1}H_1 \cap S^{-1}H_2 \subseteq S^{-1}N$ or $S^{-1}H_1 \cap S^{-1}H_3 \subseteq S^{-1}N$ or $S^{-1}H_2 \cap S^{-1}H_3 \subseteq S^{-1}N$, as needed.

Proposition 2.24. Let M be an R-module and $\{K_i\}_{i \in I}$ be a chain of strongly 2-irreducible submodules of M. Then $\bigcap_{i \in I} K_i$ is a strongly 2-irreducible submodule of M.

Proof. Let $H_1 \cap H_2 \cap H_3 \subseteq \bigcap_{i \in I} K_i$ for submodules H_1 , H_2 and H_3 of M. Assume that $H_1 + H_2 \not\subseteq \bigcap_{i \in I} K_i$, $H_1 + H_3 \not\subseteq \bigcap_{i \in I} K_i$, and $H_2 + H_3 \not\subseteq \bigcap_{i \in I} K_i$.

Then there are $m, n, t \in I$, where $H_1 \cap H_2 \not\subseteq K_m$, $H_1 \cap H_3 \not\subseteq K_n$, and $H_2 \cap H_3 \not\subseteq K_t$. Since $\{K_i\}_{i \in I}$ is a chain we can assume that $K_m \subseteq K_n \subseteq K_t$. But as $H_1 \cap H_2 \cap H_3 \subseteq K_m$ and K_m is a strongly sum 2-irreducible submodule of M, we have either $H_1 \cap H_2 \subseteq K_m$ or $H_1 \cap H_3 \subseteq K_m$ or $H_2 \cap H_3 \subseteq K_m$. In any case, we get a contradiction.

Theorem 2.25. Let $f : M \to M$ be a epimorphism of *R*-modules. Then we have the following.

- (a) If N is a strongly 2-irreducible submodule of M such that $ker(f) \subseteq N$, then f(N) is a strongly 2-irreducible submodule of M.
- (b) If N is a strongly 2-irreducible submodule of M, then f⁻¹(N) is a strongly 2-irreducible submodule of M.

Proof. (a) Let N be a strongly 2-irreducible submodule of M. If $f(N) = \dot{M}$, then we have $N + Ker(f) = f^{-1}(f(N)) = f^{-1}(\dot{M}) = f^{-1}(f(M)) = M$. Now as $ker(f) \subseteq N$, we get that N = M, which is a contradiction. Therefore, $f(N) \neq \dot{M}$. Suppose that $\dot{H_1} \cap \dot{H_2} \cap \dot{H_3} \subseteq f(N)$ for submodules $\dot{H_1}$, $\dot{H_2}$ and $\dot{H_3}$ of \dot{M} . Then $f^{-1}(\dot{H_1}) \cap f^{-1}(\dot{H_2}) \cap f^{-1}(\dot{H_3}) \subseteq f^{-1}(f(N)) = N$ since $ker(f) \subseteq N$. Thus by assumption, either $f^{-1}(\dot{H_1}) \cap f^{-1}(\dot{H_2}) \subseteq N$ or $f^{-1}(\dot{H_1}) \cap f^{-1}(\dot{H_3}) \subseteq$ N or $f^{-1}(\dot{H_2}) \cap f^{-1}(\dot{H_3}) \subseteq N$. Now as f is epimorphism, we have either $\dot{H_1} \cap \dot{H_2} \subseteq f(N)$ or $\dot{H_1} \cap \dot{H_3} \subseteq f(N)$ or $\dot{H_2} \cap \dot{H_3} \subseteq f(N)$, as needed.

(b) Let \hat{N} be a strongly 2-irreducible submodule of \hat{M} . Since $\hat{N} \neq \hat{M}$ and f is a epimorphism, we have $f^{-1}(\hat{N}) \neq M$. Now let $H_1 \cap H_2 \cap H_3 \subseteq f^{-1}(\hat{N})$ for submodules H_1, H_2 and H_3 of M. Then $f(H_1) \cap f(H_2) \cap f(H_3) \subseteq f(f^{-1}(\hat{N})) = \hat{N}$. Thus by assumption, either $f(H_1) \cap f(H_2) \subseteq \hat{N}$ or $f(H_1) \cap f(H_3) \subseteq \hat{N}$ or $f(H_2) \cap f(H_3) \subseteq \hat{N}$. Now we have either $H_1 \cap H_2 \subseteq f^{-1}(\hat{N})$ or $H_1 \cap H_3 \subseteq f^{-1}(\hat{N})$ or $H_2 \cap H_3 \subseteq f^{-1}(\hat{N})$, as required.

Theorem 2.26. Let M be a finitely generated multiplication distributive Rmodule and let N be a non-zero proper submodule of M. Then the following statements are equivalent:

- (a) N is a strongly 2-irreducible submodule of M;
- (b) $(N:_R M)$ is a strongly 2-irreducible ideal of R;
- (c) $(N:_R M)$ is a 2-irreducible ideal of R.

Proof. $(a) \Rightarrow (b)$ This follows from Theorem 2.12.

 $(b) \Rightarrow (c)$ This follows from [21, Proposition 1].

 $(c) \Rightarrow (a)$ Let $H_1 \cap H_2 \cap H_3 \subseteq N$ for submodules H_1 , H_2 and H_3 of M. Then as M is a distributive R-module, we have

$$N = N + (H_1 \cap H_2 \cap H_3) = (N + H_1) \cap (N \cap H_2) \cap (N \cap H_3).$$

This implies that $(N:_R M) = (N+H_1:_R M) \cap (N+H_2:_R M) \cap (N+H_3:_R M)$. Thus by assumption, either $(N:_R M) = (N+H_1:_R M) \cap (N+H_2:_R M)$ or $(N:_R M) = (N+H_1:_R M) \cap (N+H_3:_R M)$ or $(N:_R M) = (N+H_2:_R M)$ M) \cap $(N+H_3:_R M)$. Therefore, by [8, Corollary 1.7], either $N = N + (H_1 \cap H_2)$ or $N = N + (H_1 \cap H_3)$ or $N = N + (H_2 \cap H_3)$, since M is a finitely generated multiplication R-module. Thus either, $H_1 \cap H_2 \subseteq N$ or $H_1 \cap H_3 \subseteq N$ or $H_2 \cap H_3 \subseteq N$ as needed.

Let R_i be a commutative ring with identity and M_i be an R_i -module, for i = 1, 2. Let $R = R_1 \times R_2$. Then $M = M_1 \times M_2$ is an R-module and each submodule of M is in the form of $N = N_1 \times N_2$ for some submodules N_1 of M_1 and N_2 of M_2 .

Theorem 2.27. Let $R = R_1 \times R_2$ be a decomposable ring and $M = M_1 \times M_2$ be an *R*-module, where M_1 is an R_1 -module and M_2 is an R_2 -module. Suppose that $N = N_1 \times N_2$ is a proper submodule of M. Then the following conditions are equivalent:

- (a) N is a strongly 2-irreducible submodule of M;
- (b) Either N₁ = M₁ and N₂ strongly 2-irreducible submodule of M₂ or N₂ = M₂ and N₁ is a strongly 2-irreducible submodule of M₁ or N₁, N₂ are strongly irreducible submodules of M₁, M₂, respectively.

Proof. (a) \Rightarrow (b). Let $N = N_1 \times N_2$ be a strongly 2-irreducible submodule of M such that $N_2 = M_2$. From our hypothesis, N is proper, so $N_1 \neq M_1$. Set $\hat{M} = M/(0 \times M_2)$. One can see that $\hat{N} = N/(0 \times M_2)$ is a strongly 2irreducible submodule of \hat{M} . Also, observe that $\hat{M} \cong M_1$ and $\hat{N} \cong N_1$. Thus N_1 is a strongly 2-irreducible submodule of M_1 . By a similar argument as in the previous case, N_2 is a strongly 2-irreducible submodule of M_2 , where, $N_1 = M_1$. Now suppose that $N_1 \neq M_1$ and $N_2 \neq M_2$. We show that N_1 is a irreducible submodule of M_1 . Suppose that $H_1 \cap K_1 \subseteq N_1$ for some submodules H_1 and K_1 of M_1 . Then

$$(H_1 \times M_2) \cap (M_1 \times 0) \cap (K_1 \times M_2) \subseteq (H_1 \cap K_1) \times 0 \subseteq N_1 \times N_2.$$

Thus by assumption, either $(H_1 \times M_2) \cap (M_1 \times 0) \subseteq N_1 \times N_2$ or $(H_1 \times M_2) \cap (K_1 \times M_2) \subseteq N_1 \times N_2$ or $(M_1 \times 0) \cap (K_1 \times M_2) \subseteq N_1 \times N_2$. Therefore, $H_1 \subseteq N_1$ or $K_1 \subseteq N_1$ since $N_2 \neq M_2$. Thus N_1 is a strongly irreducible submodule of M_1 . Similarly, we can show that N_2 is strongly irreducible submodule of M_2 .

 $(b) \Rightarrow (a)$. Suppose that $N = N_1 \times M_2$, where N_1 is a strongly 2-irreducible submodule of M_1 . Then it is clear that N is a strongly 2-irreducible submodule of M. Now, assume that $N = N_1 \times N_2$, where N_1 and N_2 are strongly irreducible submodules of M_1 and M_2 , respectively. Hence $(N_1 \times M_2) \cap (M_1 \times N_2) =$ $N_1 \times N_2 = N$ is a strongly 2-irreducible submodule of M, by Lemma 2.15. \Box

Theorem 2.28. Let $R = R_1 \times R_2 \times \cdots \times R_n$ $(2 \le n < \infty)$ be a decomposable ring and $M = M_1 \times M_2 \cdots \times M_n$ be an *R*-module, where for every $1 \le i \le n$, M_i is an R_i -module, respectively. Then for a proper submodule N of M the following conditions are equivalent:

F. Farshadifar, H. Ansari-Toroghy

- (a) N is a strongly 2-irreducible submodule of M;
- (b) Either N = ×ⁿ_{i=1}N_i such that for some k ∈ {1, 2, ..., n}, N_k is a strongly 2-irreducible submodule of M_k, and N_i = M_i for every i ∈ {1, 2, ..., n} \ {k} or N = ×ⁿ_{i=1}N_i such that for some k, m ∈ {1, 2, ..., n}, N_k is a strongly irreducible submodule of M_k, N_m is a strongly irreducible submodule of M_k, N_m is a strongly irreducible submodule of M_m, and N_i = M_i for every i ∈ {1, 2, ..., n} \ {k, m}.

Proof. We use induction on n. For n = 2 the result holds by Theorem 2.27. Now let $3 \leq n < \infty$ and suppose that the result is valid when $K = M_1 \times \cdots \times M_{n-1}$. We show that the result holds when $M = K \times M_n$. By Theorem 2.27, N is a strongly 2-irreducible submodule of M if and only if either $N = L \times M_n$ for some strongly 2-irreducible submodule L of K or $N = K \times L_n$ for some strongly irreducible submodule L_n of M_n or $N = L \times L_n$ for some strongly irreducible submodule L of K is a strongly irreducible submodule L_n of M_n . Note that a proper submodule L of K is a strongly irreducible submodule of K if and only if $L = \times_{i=1}^{n-1} N_i$ such that for some $k \in \{1, 2, ..., n-1\}, N_k$ is a strongly irreducible submodule of M_k , and $N_i = M_i$ for every $i \in \{1, 2, ..., n-1\} \setminus \{k\}$. Consequently the claim is now verified.

Acknowledgments

The authors would like to thank the referee for his/her helpful comments.

References

- W. Anderson, K.R. Fuller, *Rings and Categories of Modules*, Springer-Verlag, New York-Heidelberg-Berlin, 1974.
- H. Ansari-Toroghy, F. Farshadifar, The Dual Notion of Multiplication Modules, *Taiwanese J. Math.*, **11**(4), (2007), 1189–1201.
- H. Ansari-Toroghy, F. Farshadifar, Fully Idempotent and Coidempotent Modules, Bull. Iranian Math. Soc., 38(4), (2012), 987-1005.
- H. Ansari-Toroghy, F. Farshadifar, Strong Comultiplication Modules, CMU. J. Nat. Sci., 8(1), (2009), 105–113.
- A. Badawi, On 2-absorbing Ideals of Commutative Rings, Bull. Austral. Math. Soc., 75, (2007), 417-429.
- 6. A. Barnard, Multiplication Modules, J. Algebra, 71, (1981), 174-178.
- 7. J. Dauns, Prime Modules, J. Reine Angew. Math., 298, (1978), 156-181.
- 8. Z. A. El-Bast, P. F. Smith, Multiplication Modules, Comm. Algebra, 16, (1988), 755-779.
- C. Faith, Rings Whose Modules Have Maximal Submodules, Publ. Mat., 39, (1995), 201-214.
- F. Farshadifar, H. Ansari-Toroghy, Strongly Sum 2-irreducible Submodules of a Module, São Paulo J. Math. Sci., (2021). https://doi.org/10.1007/s40863-021-00211-w.
- I. M. A. Hadi, G. A. Humod, Strongly (Completely) Hollow Sub-modules II, *Ibn AL-Haitham Journal For Pure and Applied Science*, 26(1), (2013), 292-302.
- W. J. Heinzer, L. J. Ratliff, D. E. Rush, Strongly Irreducible Ideals of a Commutative Ring, J. Pure Appl. Algebra, 166(3), (2002), 267-275.
- 13. C. P. Lu, M-Radicals of Submodules in Modules, Math. Japonica, 34(2), (1989), 211-219.

- R. L. McCasland, M. E. Moore, On Radical of Submodules of Finitely Generated Modules, Canad. Math. Bull., 29(1), (1986), 37-39.
- H. Mostafanasab, E. Yetkin, U. Tekir, A. Yousefian Darani, On 2-absorbing Primary Submodules of Modules over Commutative Rings, An. St. Univ. Ovidius Constanta, 24(1), (2016), 335-351.
- 16. Sh. Payrovi, S. Babaei, On 2-absorbing Submodules, Algebra Collq., 19, (2012), 913-920.
- 17. R. Y. Sharp, Step in Commutative Algebra, Cambridge University Press, 1990.
- P. F. Smith, Some Remarks on Multiplication Modules, Arch. Math., 50, (1988), 223– 235.
- A. Yousefian Darani, F. Soheilnia, 2-absorbing and Weakly 2-absorbing Submoduels, Thai J. Math., 9(3), (2011), 577-584.
- A. Yousefian Darani, F. Soheilnia, On n-absorning Submodules, Math. Commun., 17, (2012), 547-557.
- A. Yousefian Darani, H. Mostafanasab, 2-irreducible and Strongly 2-irreducible Ideals of Commutative Rings, *Miskolc Mathematical Notes*, **17**(1), (2016), 441-455.